If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=91=0
We move all terms to the left:
14x^2-(91)=0
a = 14; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·14·(-91)
Δ = 5096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5096}=\sqrt{196*26}=\sqrt{196}*\sqrt{26}=14\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{26}}{2*14}=\frac{0-14\sqrt{26}}{28} =-\frac{14\sqrt{26}}{28} =-\frac{\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{26}}{2*14}=\frac{0+14\sqrt{26}}{28} =\frac{14\sqrt{26}}{28} =\frac{\sqrt{26}}{2} $
| 17-4z+2z=30 | | 4x+55=7x+34 | | 78=8p | | X=3-2y.Y-2 | | 4=6n-5 | | (5x-9)=5/3x- | | -7+3p=5 | | 16f+2=6f-3 | | 7.5r–2=-24 | | 4b-b-7=20 | | 45+x=49 | | b/10-6=7 | | k/3=20/12 | | x3x=24 | | 7=4n+3 | | 3/2=3w+29/24w | | 40+y=45 | | 5t-11=99 | | 1/3(x-2)=1/ | | A²+d²=C² | | g+32/7=8 | | -6p+13=-5 | | 4/h=12/18 | | 5/(x-9)=8/(x+5) | | r2+1=–3 | | 4/6x=54 | | 17f-2=6f+3 | | 144x+240=224x-320 | | 16/12=12/f | | 6x-4x(x-9)=2(3-x) | | 17f+2=6f+3 | | 49=36+v |